Dr Ahmed Mohamed Elsayed Bayoumi
Qualification
- Ph.D. In mathematics(Numerical Analysis),Ain Shams University, Egypt, 2014.
Teaching Interest
- Mathematics
Research Interest
- Mathematics
Publications
- Bayoumi, A. M., & Ramadan, M. A. (2024). One step inversion free iterative algorithm for computing generalised bisymmetric solution for nonlinear matrix equations. International Journal of Control, 1-10.
- Bayoumi, A. M. (2024). An Accelerated Jacobi-Gradient Iterative Algorithm to Solve the Matrix Equation $${\varvec {A}}\boldsymbol {Z}-\overline {\boldsymbol {Z}}{\varvec {B}}={\varvec {C}} $$. Iranian Journal of Science, 48(3), 659-666.
- Bayoumi, A. M. (2024). Real iterative algorithms for solving a complex matrix equation with two unknowns. International Journal of Computer Mathematics: Computer Systems Theory, 1-23.
- Bayoumi, A. M. (2024). A shift‐splitting Jacobi‐gradient iterative algorithm for solving the matrix equation A 𝒱− 𝒱‾ B= C. Optimal Control Applications and Methods, 45(4), 1593-1602.
- Bayoumi, A. M. (2023). Relaxed gradient-based iterative solutions to coupled Sylvester-conjugate transpose matrix equations of two unknowns. Engineering Computations, 40(9/10), 2776-2793.
- BAYOUMI, A. (2023). Modified gradient-based algorithm to find Hamiltonian solution to the Sylvester conjugate transpose matrix equation. Asian Journal of Control 20(2) (2018) 228–235.
- Bayoumi, A. M., & Ramadan, M. (2022). (R, S) conjugate solution to coupled Sylvester complex matrix equations with conjugate of two unknowns. Automatika, 63(3), 454-462.
- Bayoumi, A. M., & Ramadan, M. A. (2020). Solving Two Coupled Fuzzy Sylvester Matrix Equations Using Iterative Least-squares Solutions. Fuzzy Information and Engineering, 12(4), 464-489.
- Ramadan, M. A., Bayoumi, A. M., & Hadhoud, A. R. (2019). A combination of Sylvester block sum and block matrix Kronecker map for explicit solutions of Sylvester system of matrix equations. Mathematical Methods in the Applied Sciences, 42(18), 7506-7516.
- Bayoumi, A. M. (2019). Finite iterative Hamiltonian solutions of the generalized coupled Sylvester–conjugate matrix equations. Transactions of the Institute of Measurement and Control, 41(4), 1139-1148.
العربية




