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Abstract

The study investigates the impact of seismic forces on structural response using a machine learning (ML)—based
approach. The study has utilized scaled structural models and subjected them to control shaking table excitations
representing low, medium, and high earthquake intensities. A linear regression—based ML model was developed using
multiple input parameters to predict the structural response characteristics. The proposed model successfully captured
the overall behavioral trends of the structures, achieving high validation accuracy. However, prediction deviations
increased at higher peak ground acceleration (PGA) levels due to nonlinear seismic effects. Residual and root mean
square error (RMSE) analyses indicate that, although the ML model slightly underestimated peak responses, it
remained effective in identifying general response patterns. Comparative validation demonstrated a reasonable
variation between lab observations and ML predictions, supporting the use of ML as a complementary predictive tool.
The findings highlight the effectiveness of ML frameworks in achieving high prediction accuracy and their potential
contribution to seismic design optimization.
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1. Introduction

Several studies have examined the seismic response of structures under varying base and soil conditions using
experimental, numerical, and hybrid approaches. A shaking table study compared the seismic response of small-
aspect-ratio base-isolated structures founded on rigid and multi-layered soft soils. An energy balance equation
incorporating soil-structure interaction (SSI) effects was developed to evaluate energy dissipation during seismic
excitation. The results demonstrated that SSI considerably reduces the isolation efficiency on soft soils, particularly
under low-frequency earthquake motions [1]. A 1/35-scale topology-optimized super high-rise mega frame—core tube
structure was tested under three seismic intensity levels—Service Level Earthquake (SLE), Design Basis Earthquake
(DBE), and Maximum Considered Earthquake (MCE). Acceleration, displacement, strain, and hysteretic energy
analyses revealed strong seismic and collapse resistance, with corner columns identified as critical components for
lateral stability [2]. Artificial intelligence (AI) has recently been explored for earthquake risk mitigation. Studies
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focusing on predictive analytics, generative design, and real-time structural health monitoring (SHM) frameworks
have emphasized Al’s potential for early warning systems, multi-hazard design optimization, and performance-based
code development. Although primarily conceptual, such works highlight the transformative role of Al in seismic
engineering [3]. A machine learning-based optimization framework employing Artificial Neural Networks (ANN),
Support Vector Machines (SVM), and Genetic Algorithms was proposed to enhance the seismic performance of tall
buildings with outrigger systems. Pushover and time-history analyses were used to train the models, achieving up to
55% drift reduction and 33% improvement in energy dissipation. While the framework was scalable across seismic
zones, it relied on synthetic datasets without code-specific calibration [4]. Finite element simulations in ABAQUS
were performed to investigate irregular steel structures equipped with lead-rubber bearings (LRB) under nonlinear
time-history loading. The models accounted for varying soil stiffness and floor counts, showing that SSI and plan
irregularity significantly influence base shear and lateral displacement characteristics [5]. Experimental work on
displacement-based seismic design using advanced viscous dampers (AVD) demonstrated up to 35.65% improvement
in damping efficiency and reductions in inter-story displacements and shear forces under frequent and rare
earthquakes. The study emphasized the role of damping ratios and damper configuration in optimizing seismic
performance [6]. Shaking table experiments on a five-story base-isolated moment-resisting frame compared near-fault
(NF) and far-fault (FF) ground motions. NF motions induced higher story drifts and base shears, while combined
linear rubber bearings and nonlinear viscous dampers effectively reduced accelerations. The findings underscored the
need to account for pulse-like NF effects and high PGA values in isolation system design [7]. Another study
investigated low-cost rubber sphere isolators for low-rise masonry buildings through monotonic compression and
shake-table tests. Results confirmed their ability to significantly reduce transmitted accelerations while maintaining
limited displacements, offering a practical and economical seismic protection solution for low-income regions [8]. A
combined experimental and analytical study on base-isolated structures demonstrated that isolation bearings filter
seismic input, attenuating peak accelerations by 17.7-75.8%. The use of filtered response spectra (FRS) more
accurately captured superstructure behavior than traditional spectra, supporting nonlinear and non-proportional
damping models for long-period systems [9]. Dynamic centrifuge experiments and numerical modelling on tunnels
embedded in cohesive soil revealed amplification of low-frequency components (<1 Hz) by surrounding soil layers.
While the tunnel experienced minimal acceleration, the corner zones showed high bending and shear stresses. The
tunnel’s presence also mitigated local liquefaction potential, providing guidance for seismic tunnel reinforcement [10].

This paper reviews existing base isolation technologies and compares their effectiveness in reducing seismic
demands for buildings, highlighting advantages and practical limitations of different devices and configurations [11].
The research investigates how low versus conventional infill wall stiffness influences the collapse behavior of
reinforced-concrete moment frames using shaking-table tests and numerical analyses [12]. The study couples
connection semi-rigidity, isolator properties, and target performance levels to minimize material use while meeting
inter-story drift and damage criteria. Results demonstrate that well-tuned hybrid isolation and semi-rigid connections
can achieve economical designs with improved energy dissipation and reduced damage concentration [13]. The
experiments show that viscous dampers substantially reduce story drifts and accelerations, enabling prefabricated
connections to remain in the elastic or minor-damage range under strong earthquakes. Fragility curves indicate
enhanced collapse safety and support the feasibility of using bolted, factory-fabricated steel frames with supplemental
damping in high-seismic regions [14]. The article synthesizes developments in nonlinear modeling, soil—structure
interaction, pounding, and the use of damping and isolation devices for such bridge systems. It identifies key
uncertainties in material models, boundary conditions, and near-fault effects, and recommends future research on
performance-based and resilience-oriented bridge design [15]. Numerical and experimental results show that these
braces enhance lateral stiffness at service levels while improving ductility and reducing residual drifts under severe
earthquakes. The proposed configuration offers a promising retrofit and design solution for RC frames requiring both
serviceability control and robust seismic protection [16]. ML frameworks that can accurately predict and optimize the
performance of seismic waves and design objectives.

2. Materials & Methods

The methodology adopted in this study machine learning (ML) part to evaluate the seismic performance base-
isolated structures which is shown in Fig.1.

The ML procedure involved training a linear regression model using the input parameters (frequency, PGA,
deformation) and corresponding output responses (drift, acceleration). The trained model’s predictions were compared
with the output results and various literatures to assess accuracy. Finally, the validation process included computing
standard deviation, residual errors, and RMSE values to determine the consistency ML outcomes. This approach
allowed for a comprehensive assessment of predictive capability under varying seismic conditions.
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The investigation was conducted to analyze the impact of various seismic waves on the frame structures and to
identify the effect of acceleration, deformation, drift ratio with various frequencies and compared with ML model
linear regression. The ground motions under varying frequency conditions, shown in table 1.
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Fig. 1 Research Methodology

Table 1: Various frequency effects

EARTHQUAKE MAGNITUDE (M) EFFECT
4 Low
6 medium
8 strong

The seismic wave frequencies as per EN 1998-1:2004, which specify performance criteria for structural safety,
inter-storey drift limits, and ground-motion simulation requirements. In line with Eurocode 8 recommendations for
dynamic testing, the input ground motions were replicated using a controlled shaking table capable of generating
harmonic frequencies corresponding to low, medium, and strong seismic effects. Table 1 presents the selected
frequency levels, representing equivalent earthquake magnitudes of 4, 6, and 8, applied at low, medium, strong
respectively. A 1:20 scaled frame structure was mounted on the shaking table, and base thicknesses were installed to
assess the effect of isolation parameters on acceleration, displacement, and drift reduction, which is shown in figure
2. EN 1998-1 directional components and structural response measurements were strictly followed, ensuring accurate
reproduction of horizontal seismic loading and compliance with drift ratio limits for operational and damage-
prevention states. High-precision sensors, including accelerometers, displacement transducers, and base shear load
cells, were employed to capture real-time response data during each test sequence.

A machine learning linear regression model, enabling predictive analysis of structural behavior under varying
seismic inputs. Input parameters such as excitation frequency, bearing, acceleration, and deformation were introduced
into the ML model to estimate output responses, including drift ratio, displacement amplitude, and damping
effectiveness. The ML model was then validated against experimental results to evaluate prediction accuracy and
identify correlations between seismic excitation characteristics and structural performance. This approach
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strengthened the reliability of the findings by coupling physical testing with computational prediction, allowing a
comprehensive assessment of structural efficiency in accordance with Eurocode seismic design principles.

model 1 Response Plot for Predictions: model 1

ted vs. Actual Plot for

@

-
=

w
w

Predicled response
~
u-

w

n

True response

Plot for model 1

Response (DriftRatio)

o 1000 2000 3000

Model 1: Tree
Status: Trained

4000 5000
Record number

2 e -~ . Training Results
5 - : RMSE (Validation) 0.30431
g g R-Squared (Validation) ©0.94
g MSE (Walidation) 0.092602
3 MAE (Walidation) 0.14453
EN ‘: MAPE (\alidation) 27 7%
PP + ) Prediction speed ~430000 obs/sec
- . '_.. Training time 5.4984 sec
= . Model size (Compact) ~286 kB
4 R Model size (Coder) ~122 KB

o os 1 1s 2z =25 a3 35 4 45 5
True respense

Fig 2. Accuracy ratio of the Trained Tree Model 1

The machine learning model shown in fig.2 has a strong predictive capability, as evidenced by its high validation
accuracy and consistent agreement between predicted and actual responses. The trained Tree model achieved an R?
value of 0.94, indicating that 94% of the variation in the structural response data was accurately captured by the model.
The low validation error metrics RMSE = 0.304, MSE = 0.0926, MAE = 0.1445, and MAPE = 27.7%, confirm the
model’s reliability in estimating drift ratio values under varying seismic input conditions. Figure 2 predicted vs. actual
plot shows a tight clustering of points along the 45° reference line, illustrating strong correlation, while the residual
distribution remains mostly centered around zero, indicating minimal bias in prediction. With a high prediction speed
of approximately 350,000 observations per second, the model also proves computationally efficient. Overall, the
trained ML model demonstrates robust performance and accurately reflects the underlying trends of the experimental
seismic response data.

3. Results and Discussion

Fig.4 represents the linear regression model's limited predictive capability when applied to the seismic response
dataset, as reflected in the distribution of predicted versus true values. The response plot indicates that although the
predicted values follow the general amplitude range of the structural responses, the points remain widely scattered
across the full record length. This pattern suggests that the model captures only broad trends but fails to recognize
fine-scale variations associated with changes in seismic input intensity. The predicted vs. actual plot further confirms
this behavior, instead of aligning along the ideal 45° line, the data forms a dense elliptical cloud, demonstrating weak
correlation and an underfitted model. Such spreading indicates that linear regression is unable to fully represent the
nonlinear interactions between seismic frequency, peak ground acceleration, and mass/deformation response in the
structure.
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Fig 4. Machine learning performance plots for the linear regression model

The residual plot reinforces these observations, as residuals range between approximately 3 and +3 without a
recognizable narrowing or trend. The absence of systematic clustering around zero shows that the model produces
both over- and under-estimations for nearly all PGA levels. This behavior indicates that the structural dynamic
response exhibits nonlinear characteristics that cannot be modeled effectively using a simple linear relationship. The
RMSE comparison also highlights this limitation, with the linear regression model producing higher RMSE values
compared with more advanced ML models (e.g., decision trees or ensemble techniques). The elevated RMSE indicates
reduced accuracy and larger deviations from the true experimental values. When compared to the experimental shaking
table results, the linear regression model clearly underpredicts peak accelerations and drifts, smoothing out the sharp
transitions observed in the physical tests. This mismatch illustrates that the structural behavior is inherently nonlinear,
influenced by frequency-dependent inertia, damping shifts, and base isolation effects. Such nonlinear patterns cannot
be captured adequately by linear regression, resulting in a weaker validation accuracy. Overall, these findings highlight
that while linear regression provides a basic prediction baseline, more advanced nonlinear ML algorithms are required
to properly model the complex seismic response structures.

Conclusion

The machine learning—based investigations conducted in this study provide a comprehensive understanding of the
influence of seismic frequency variations on the dynamic response of structural systems. The validation results
demonstrate that linear regression models effectively captured the overall response trends, however, their predictive
accuracy is limited when applied to highly nonlinear seismic behavior. Residual and root mean square error (RMSE)
analyses revealed that prediction deviations increased with higher peak ground acceleration (PGA) levels, although
the overall prediction performance remained satisfactory. The linear regression model exhibited a tendency to
underestimate peak response values and smooth rapid response fluctuations, indicating its suitability primarily for
identifying general behavioral patterns rather than extreme response conditions. Overall, the findings confirm that
machine learning offers a reliable framework for characterizing structural seismic performance, while advanced
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nonlinear ML models can serve as valuable complementary tools for enhancing prediction accuracy and optimizing
seismic isolation and structural design strategies.
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