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ABSTRACT   

Successful control of diabetes necessitates continuous observation of blood glucose levels and timely intervention to 

prevent acute complications. Traditional threshold-based systems often fail to capture subtle glucose fluctuations, 

particularly in real time. This paper presents a fuzzy logic-based system for dynamically assessing diabetes status and 

determining insulin doses using real-time glucose data from wearable or handheld sensors. Using expert-defined 

linguistic variables and fuzzy membership functions, the model categorizes glucose levels into clinically meaningful 

states, such as hypoglycemia, normoglycemia, and hyperglycemia, with graded severity. The fuzzy inference engine 

generates personalized alerts and dose recommendations based on American Diabetes Association (ADA) guidelines, 

ensuring medical relevance. The system was implemented using Python and tested across a wide glucose range (40– 

310 mg/dL). Simulation results showed that the model accurately recommended 0 units at low glucose levels (50–65 

mg/dL), small doses at borderline values, and aggressive dosing at critical levels, with smooth transitions between 

categories. Compared to traditional PID control, the fuzzy logic model offered safer, more conservative dose 

adjustments and reduced risk of overcorrection. Designed for integration into mobile health platforms and intelligent 

agents like Furhat, this model represents a major step forward in delivering autonomous, interpretable, and 

patientcentric diabetes care.  
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1. Introduction  

Diabetes is a disease that is endured by millions of people worldwide. Diabetes should be regulated in a manner in 

which there should be proper balancing of blood sugar tests, healthy eating, proper exercise, and utilization of 

medication according to prescription [1]. Unless regulated, diabetes may lead to serious outcomes such as heart 

disease, damage to kidneys, damage to nerves, and loss of eyesight. Fortunately, medical and technological innovations 

are transforming diabetes care so that it is easier for patients to lead healthier lifestyles [2].  

  
According to the IDF Diabetes Atlas 11th Edition (2025), a total of 589 million adults aged 20–79 years are living 

with diabetes in 2024, which is 1 in every 9 adults. This is projected to reach 853 million by 2050. Notably, 81% of 

  
  



103   
adults with diabetes reside in low- and middle-income countries. The age-standardized global prevalence of diabetes 

has increased from 4.6% in 2000 to 11.1% in 2024 [3] as shown in Figure 1. The MENA region has the world's highest 

regional prevalence of diabetes. The age-standardized prevalence in adults 20–79 years in 2024 is 19.9%, and 84.7 

million are affected. This is projected to nearly double to 162.6 million by the year 2050. Among nations with some 

of the highest national prevalence rates are Pakistan, Kuwait, Qatar, Saudi Arabia, and Egypt, with Pakistan leading at 

31.4% [4].  

  

  
Figure1. diabetes prevalence and projected growth by region from 2024 to 2050 [3]  

  

One of the biggest advances in diabetes management is the application of artificial intelligence (AI) in health 

systems. AI technology has the capacity to predict blood glucose level changes, personalize treatment regimens, and 

simplify insulin delivery to improve patient outcomes. For example, machine learning algorithms are applied to the 

large-volume data from continuous glucose monitoring systems to predict glycemic patterns and allow pro-active 

therapy adjustments. Predictive analytics play a critical role in averting hyperglycemia and hypoglycemia events, 

which are frequent occurrences in diabetes management [5]. Continuous glucose monitoring systems transformed 

blood sugar monitoring in isolation. In comparison with traditional finger-stick methodology, CGMs offer real-time 

continuous glucose levels, day-to-day and night-to-night trends of glucose patterns. The real-time data stream enables 

day-to-day and night-to-night immediate action, i.e., diet adjustment or insulin injection, in an effort to maximize 

glycemic control. CGMs have also been linked to better glycemic control and reduced HbA1c levels in type 1 and 

type 2 diabetic patients [6]. Following the foundation of continuous glucose monitor (CGM) technology, the 

advancement in artificial pancreas systems is a breakthrough. Artificial pancreas systems combine continuous glucose 

monitors (CGMs), and insulin pumps with advanced control algorithms to provide automated insulin in real time 

according to the levels of glucose. Closed-loop functionality of artificial pancreas systems lowers the necessity for 

manual insulin delivery, thereby decreasing patients' burden and enhancing glycemic control. Clinical trials have 

demonstrated that these systems are superior to the conventional method in keeping blood glucose levels in target 

range [7]. At the same time, investigations on smart insulin preparations are also in progress in full swing. 

Glucoseresponsive insulins would turn on or turn off based on surrounding blood glucose concentrations, a more 

physiological approach to insulin therapy. The body's insulin response is mimicked normally; smart insulin should 

minimize hypoglycemia risk and enhance overall glycemic control. These preparations, although as yet untested, 

represent promising directions for the future of diabetes care patterns [8].  

Apart from technology, public health programs also play a crucial role in prevention and control of diabetes.  

Programs like the National Diabetes Prevention Program (NDPP) focus on lifestyle modification through proper diet, 

exercise, and weight loss to prevent the onset of type 2 diabetes. Results from large-scale studies indicate that these 

interventions can significantly reduce the risk of developing diabetes in high-risk individuals [9]. The integration of 

smart monitoring devices, artificial intelligence, and public health practices is transforming individualized and 

preventive diabetes management. These innovations allow people with diabetes to manage their condition more 

effectively, reduce complications, and improve quality of life. As research advances and technology improves, the 

future of diabetes management holds even more creative and patient-tailored interventions. Among these technologies, 



104   
fuzzy logic stands out as an excellent aid to comprehend glucose fluctuation on the basis of human-like reasoning. It 

is unlike fixed threshold systems and can manage the variability and uncertainty inherent in blood glucose levels. It 

assists in decision-making and enables timely intervention through the dynamic classification of glucose states and 

the generation of real-time alerts. When integrated with continuous glucose monitoring systems, it renders diabetes 

management safer and more adaptive [10].  

This paper presented a fuzzy logic system for real-time assessment of diabetes condition from glucose levels 

obtained from handheld or wearable devices. It classifies glucose levels into medically relevant classes according to 

expert-defined linguistic variables and fuzzy membership functions. The system generates adaptive alerts, ensuring 

timely intervention.  

2. LITERATURE REVIEW  

Effective diabetes management hinges on continuous monitoring of blood glucose levels and timely interventions to 

prevent acute complications. Traditional threshold-based systems often fall short in detecting subtle glucose variations, 

particularly in real-time scenarios. Several papers introduce a fuzzy logic-based system designed to dynamically assess 

diabetes status using real-time glucose readings from wearable or handheld monitoring devices. Dwivedi et al. presents 

a fuzzy logic-based framework to improve diabetes care through the management of uncertain and dynamic patient 

data. The method integrates fuzzy rule-based systems, clustering, and inference techniques with patient-specific inputs 

such as demographics, medical history, and real-time physiological parameters. Simulation and field testing 

demonstrate the viability of the system in enabling clinical decision support and individualized treatment, leading to 

better patient outcomes and quality of life [11]. The objective of this paper is to address the issue of regulating Type 1 

diabetes from a nonlinear model simulated using MATLAB-SIMULINK. A blood glucose sensor and an insulin control 

system are implemented using Mamdani-type fuzzy logic as well as a PID controller. Simulation with and without 

disturbance shows that the fuzzy controller outperforms the PID controller in maintaining the blood glucose level in 

the normal range [12].  Ananya et al. presents a premature diabetes prediction model based on Mamdani-type Fuzzy 

Logic and Hierarchical Fuzzy Inference System (Fuzzy Tree) implemented in MATLAB. Clinical features FPG, 2h-

PG, and HbA1c are employed in the model to assess diabetes risk. Experiments with real patient data of Hyderabad, 

India, reveal that both models are effective, whereas the Fuzzy Tree model is more accurate in diabetes risk prediction 

when relevant input features are meticulously chosen [13].   

On the other hand, there are several works that performing text analysis and machine learning for generating realtime 

glucose level prediction models. Zamanillo-Campos et al. (2025) measured the impact of DiabeText, a text-based 

mobile health intervention to aid type 2 diabetes mellitus (T2DM) patient self-management. Among 742 Spanish 

T2DM patients enrolled in a 12-month randomized controlled trial, 167 individualized text messages were provided 

plus usual care for the intervention group. Despite no clinically significant difference in HbA1c, DiabeText increased 

diabetes self-efficacy, drug adherence reported by patients, and quality of life considerably, attesting to its potential as 

a method for improving patient-directed diabetes control [14]. Khanna et al. (2024) sought to maximize Type 1 diabetes 

treatment using machine learning and neuroevolutionary. From a single patient with a 30-day data set, a random forest 

model generated real-time glucose level predictions, and an optimized neural net recommended optimal insulin pump, 

carbohydrate, and injection strategies. Injection frequency and blood glucose excursions were reduced using the 

strategy. It was paired with a connection to a large language model to make it easier to use, facilitate better management 

and greater patient acceptance of customized treatment interventions [15]. Eichenlaub (Eichenlaub et al., 2023) 

evaluates clinical impact of BGMS accuracy in diabetes mellitus care. Relative to true accuracy in actual clinical use, 

this study contrasts predicted BG from four various BGMS with true accuracy in low, normal, and high glucose 

simulated conditions. The authors suggest that deceptive BGMS is most likely to have a significant impact on clinical 

care, with increased risk for both missed hypoglycemia and delayed response, as well as failure to prevent diabetic 

complication, especially under vulnerable conditions like pregnancy [16]. Lim et al. (2021) presented an integrative 

review and machine learning (ML) approach to predicting and managing type 2 Diabetes Mellitus (T2DM) 

complications.  

 Authors demonstrate the viability of ML as a predictive agent, risk-stratifying agent, planning intervention tool, and 

ongoing care guide. The suggested system aligns with physician processes—Identify, Stratify, Engage, Measure— and 

optimizes healthcare service through early intervention and proactive prevention of diabetes complications utilizing 

evidence-based findings [17]. Kopanz et al. (2021) This study evaluates GlucoTab, an electronic diabetes management 

system (eDMS), as utilized for inpatient Type 2 Diabetes Mellitus treatment. A retrospective beforeafter study design 

contrasted paper-based versus eDMS documentation in a hospital. Findings exhibit improved documentation quality, 

comparable glycemic control, and positive healthcare provider feedback. The eDMS enhanced workflow efficiency, 

reduced errors, and saved time, demonstrating its effectiveness as a digital tool for inpatient diabetes management 

[18].   

 These studies describe different, technology-inclined strategies for the management of diabetes, particularly T2DM, 

through mobile health platforms, intelligent systems, and machine learning.  
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3. METHODOLOGY  

 This study adopts a computational modelling approach using fuzzy logic to simulate and regulate insulin dosage based 

on real-time blood glucose readings. The methodology is structured around the design, development, and evaluation 

of a Mamdani-type fuzzy inference system (FIS), calibrated to clinical insulin dosing guidelines as shown in Figure 

2.    

  

 

   Figure 2. schematic diagram of proposed fuzzy logic-based glucose injection and alert system  

4. SYSTEM DESIGN AND IMPLEMENTATION  

The fuzzy logic model consists of one input variable — blood glucose level (mg/dL) — and one output variable — 

insulin dose (units). The input variable is categorized into seven linguistic terms: Very Low, Low, Normal, Borderline 

High, High, Very High, and Critical High, based on WHO and ADA-recommended glucose ranges. The output is 

categorized into five action-based terms: No Injection, Low Dose, Moderate Dose, High Dose, and Aggressive Dose.  

4.1. Clinical Glucose Thresholds (mg/dL)  

 The system design is based on established clinical glucose thresholds outlined in Table 1, which categorizes blood 

glucose levels to guide insulin dosing decisions. These categories include severe hypoglycemia (<54 mg/dL), 

hypoglycemia (<70 mg/dL), normal glucose (70–99 mg/dL fasting or <140 mg/dL postprandial), prediabetes (100– 

125 mg/dL fasting or 140–199 mg/dL postprandial), and diabetes (≥126 mg/dL fasting or ≥200 mg/dL at any time).  

These thresholds form the basis for defining the fuzzy logic input membership functions. By aligning the fuzzy 

categories with these clinical ranges, the system ensures that the insulin recommendations remain medically accurate 

and clinically interpretable.  

Table 1. Clinical Glucose Thresholds [19]  

Category  Fasting Plasma 

Glucose (FPG)  

2-hour Postprandial 

(OGTT)  

Random Glucose  

Severe Hypoglycemia  < 54  N/A  < 54  

Hypoglycemia (alert)  < 70  N/A  < 70  

Normal  70–99  < 140  < 140  

Prediabetes (Impaired 

Fasting)  

100–125  140–199  140–199  

Diabetes  ≥ 126  ≥ 200  ≥ 200  

4.2. Membership Function Development  

 The system employs expert-defined linguistic variables and fuzzy membership functions to classify glucose levels 

into medically relevant categories, such as hypoglycemia, normoglycemia, and hyperglycemia, with further 
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subcategories indicating severity. A fuzzy inference engine then generates adaptive alerts, ranging from routine 

monitoring suggestions to emergency warnings, tailored to the individual's current state. This approach allows for 

smooth transitions between categories, accommodating physiological fluctuations and sensor noise [20].  

Triangular and trapezoidal membership functions were defined for both input and output variables. These functions 

were developed using expert clinical knowledge and publicly available medical standards. The glucose input ranged 

from 0 to 350 mg/dL, while the output insulin dose ranged from 0 to 12 units.  

A total of seven fuzzy rules were constructed using an IF-THEN format to map glucose levels to insulin actions. For 

example:  

• IF glucose is Very Low THEN insulin dose is No Injection.  

• IF glucose is Critical High, THEN insulin dose is Aggressive Dose.  

The rule base was validated through expert opinion and aligned with WHO and IDF recommendations.  

4.3. Injection Control Module  

By integrating a rule-based architecture aligned with the recommendations of the American Diabetes Association, the 

system ensures clinical appropriateness [21]. Its design facilitates deployment in mobile health applications, intelligent 

assistants, or robotic platforms like Furhat, enabling voice-based interactive feedback as shown in Figure 3. Simulation 

results demonstrate the model's accuracy, responsiveness, and usability, marking a significant advancement in 

personalized, intelligent, and autonomous diabetes care systems that enhance patient safety and quality of life.  

  

Figure 3. flowchart for the Injection Control Module and Alert System  

5. FUZZY MODEL IMPLEMENTATION  

 The system was implemented using Python 3.11 with the scikit-fuzzy library. The fuzzy logic controller was evaluated 

through simulation with various glucose input scenarios ranging from hypoglycemia to hyperglycemia. Output doses 

were recorded and interpreted against expected clinical recommendations.   

The World Health Organization (WHO) does not issue rigid numerical insulin dosing values for all patients. Rather, 

insulin treatment is personalized according to age, type of diabetes, weight, lifestyle, glucose profile, and comorbid 

conditions. Nonetheless, we can establish a general clinical concept of insulin dosing in accordance with WHO 

guidelines and in practice as shown in Table 2.   

 For Type 2 Diabetics, the World Health Organization and international guidelines from IDF and ADA suggest the 

administration of basal insulin at a dose of 0.1 to 0.2 units per kilogram body weight per day when there is consistently 

elevated fasting blood glucose. The dosage should be titrated every 3 to 7 days based on fasting glucose readings. For 

patients requiring intensive therapy, a basal-bolus regimen is recommended, with a total daily insulin dose of 

approximately 0.4 to 1.0 units/kg/day, divided equally between 50% basal insulin and 50% bolus insulin, administered 

before meals.  

Table 2. insulin dosing that aligns with WHO  

Type of Insulin  When It's Used  Examples  

Rapid-acting  Before meals to manage postprandial spikes  Insulin Lispro, Aspart  

Short-acting  30–60 min before meals  Regular insulin  

Intermediate-acting  Covers insulin needs for half a day  NPH insulin  
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Long acting  Basal (24-hour) control  Insulin Glargine, Detemir  

Premixed  Combines short/intermediate  70/30, 75/25 formulations  

 The fuzzy logic-based algorithm for insulin dosing begins by reading the patient’s glucose level from a sensor. This 

input undergoes fuzzification, where the crisp glucose value is mapped to predefined linguistic categories such as 

“low,” “normal,” or “high.” The system then evaluates a set of clinical rules to determine the appropriate response, 

which is defuzzified into a precise insulin dose. Based on the glucose reading, the algorithm makes informed decisions: 

for hypoglycemic values (≤ 70 mg/dL), insulin is suppressed, and an alert is issued; for higher values, insulin doses 

are scaled appropriately. An alert message is generated in parallel, offering recommendations based on the risk level. 

The prescribed insulin dose is administered, and the event is logged along with the glucose value and alert. The system 

then enters a wait phase before repeating the cycle, allowing for continuous, adaptive glucose regulation and 

personalized patient care. Figure 4 shows the Glucose level membership based on Clinical Glucose Thresholds in 

Table 1.  

  

Figure 4. Glucose level membership  

Then the insulin adjustment should be added based on the insulin correction dose formula as defined in  

equation (1).   
 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐺𝑙𝑢𝑐𝑜𝑠𝑒−𝑇𝑎𝑟𝑔𝑒𝑡 𝐺𝑙𝑢𝑐𝑜𝑠𝑒  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐷𝑜𝑠𝑒 =     … (1)  
𝐼𝑛𝑠𝑢𝑙𝑖𝑛 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐼𝑆𝐹) 

where target glucose is the desired blood glucose concentration, normally 100-120 mg/dL, and the insulin sensitivity  

factor (ISF) is the predicted reduction in blood glucose by a unit of insulin, normally about 50 mg/dL per unit. Table 

3 presents the Insulin Dose Adjustment Based on Glucose Levels.  

  

Table 3. Insulin Dose Adjustment Based on Glucose Levels  

Glucose Range 

(mg/dL)  

Glucose Category  Insulin Dose Guidance  

0 – 54  Very Low  No insulin; administer glucose immediately.  

50 – 70  Low  Avoid insulin; recheck after carb intake.  

70 – 99  Normal  Continue basal insulin only (0.1–0.2 units/kg).  

100 – 125  Borderline High  Consider small dose (e.g., +2 units) if fasting.  

126 – 180  High  Administer bolus insulin (calculated for meal/carbs).  

> 180  Very High  Larger correction dose (+4–6 units) may be needed.  

> 250 – 300+  Critical High  High correction dose or medical attention (+6–10 units)  

> 400  Emergency  Immediate clinical intervention – possible Diabetic  

ketoacidosis (DKA)  

Based on the information from Table 3, then we can propose Fuzzy Rule for Insulin Dosing as shown in 

Table 4.  
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Table 4. the propose Fuzzy Rule for Insulin Dosing  

Glucose Category  Range (mg/dL)  Fuzzy Output  Insulin Dose (units)  

Very Low  0–54  No Injection  0  

Low  50–70  Suppress  0  

Normal  70–99  Low Dose  +1 to +2  

Borderline High  100–125  Mild Adjustment  +1 to +2  

High  126–180  Moderate Dose  +3 to +6  

Very High  >180  High Dose  +7 to +10  

Critical High  >250–300+  Aggressive Dose  +10+  

For individualization and enhancing the precision of insulin therapy, one can calibrate a fuzzy logic controller to 

mimic real insulin dosing protocol founded on clinical glucose level ranges. This is done by characterizing fuzzy 

sets for the classes "Very Low," "Normal," "High," and "Critical High," and mapping them onto matching insulin 

dose actions extending from no injection to aggressive dosing (0 to more than 10 units). The controller translates 

these classes into insulin action classes: no injection, low (1–2 units), moderate (3–6 units), and high or aggressive 

doses (7–10+ units).   

Using PYTHON's Mamdani-type Fuzzy Inference System (FIS), the rules are realized through membership 

functions and a rule base for encoding clinical logic. PYTHON code defines the FIS initialization, adds inputs and 

outputs, specifies triangular and trapezoidal membership functions, and applies expert rules.   

The system that results enables the assessment of real-time glucose levels and the provision of context-sensitive 

insulin suggestions, consistent with best medical practices for diabetes management.  

  

6. RESULTS AND DISCUSSION  

The fuzzy logic model for insulin dosing was successfully implemented using Python and the scikit-fuzzy library. 

The system evaluated glucose input values ranging from 40 mg/dL to 300 mg/dL and provided appropriate insulin 

dose outputs from 0 to 12 units as presented in in Figure 5. Simulation tests demonstrated that the model accurately 

identified hypoglycemic, normoglycemic, and hyperglycemic states based on real clinical thresholds.  

  

Figure 5. Insulin Dose level membership  

The implementation of the fuzzy logic-based insulin dosing system demonstrated effective decision-making across 

clinically significant glucose ranges as shown in Figure 6. At low glucose levels (50–65 mg/dL), the system 

appropriately suppressed insulin administration, recommending 0 units to prevent hypoglycemia. For glucose values 

within normal and borderline thresholds (95–115 mg/dL), the model suggested conservative dosing between 1.5 and 

2.5 units, supporting minimal intervention. As glucose levels rose into the elevated range (150–190 mg/dL), 

moderate doses from 4.8 to 7.2 units were advised, reflecting the need for tighter glycemic control.   

In cases of very high and critical glucose values (260–310 mg/dL), the system issued aggressive insulin 

recommendations (10.5–11.8 units), closely adhering to WHO and ADA clinical guidelines. These results point to 

the capability of the fuzzy model in approximating expert medical opinion with gradual change and smooth transition 

between dose levels, minimizing sudden changes and maximizing patient safety.  
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Figure 6. Fuzzy Logic-Based Insulin Dose Recommendations  

 The PID Controller and Fuzzy Logic Model exhibit different trends of behavior in insulin dosing for different levels 

of glucose as seen in Figure 7. For low glucose levels (50–65 mg/dL), both models correctly suggest zero insulin to 

avert hypoglycemia, indicating safety during extreme conditions. For moderate glucose concentrations (95–150 

mg/dL), though, the fuzzy logic system produces smoother and more conservative dose corrections with a bias for 

gradual response rather than sudden change. The PID controller would, in contrast, respond more severely and can 

create sharper oscillations. At higher glucose concentrations (190–310 mg/dL), both models conclude that higher doses 

of insulin are required but the fuzzy logic model still tends to make increasingly incremental changes. This response 

lessens the risk of overcorrection and glycemic variability and is therefore more aligned with clinical practice that 

seeks to maintain metabolic stability. The fuzzy system has a generally more adaptive and patient-safe response profile, 

which is particularly valuable for real-time autonomous insulin control.  

  

  

Figure 7. Comparison Of Insulin Dosing: Fuzzy Logic Vs. PID Controller  

7. CONCLUSION  

 This paper presents a fuzzy logic insulin dosing system that replicates expert clinical judgment and overcomes the 

limitations of real-time diabetes management. The system starts with the patient's glucose value from a sensor and 

goes through a sequence of fuzzy inference processes—fuzzification, rule evaluation, and defuzzification—to 

calculate a precise dose of insulin. Intelligent decision-making involves the provision of context-aware alerts and 

traceability logging of all the information. Simulation outcomes illustrate the capacity of the model in classifying 

glucose status and recommending appropriate insulin dosing across a broad spectrum of glucose levels. As an 

illustration, the system prescribed zero insulin for low glucose levels (50–65 mg/dL), small doses for borderline levels 

(95–115 mg/dL), moderate doses for high levels (150–190 mg/dL), and aggressive dosing for very high levels (260– 

310 mg/dL), which matches very well with WHO and ADA guidelines. The model's smooth dose category changes 

prevent abrupt insulin corrections, reducing risks of hypoglycemia or glycemic variability. The fuzzy logic model 

proved to perform more adequately compared to a PID controller regarding dose granularity in moderate ranges, 

reflecting a safer and more patient-adaptive profile. This research reaffirms that fuzzy logic is an appropriate paradigm 
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for designing intelligent autonomous insulin dosing systems and that it can be effectively integrated into mobile 

platforms, wearable devices, and robot frameworks like Furhat.  

7.1. Recommendations  

• Integrate the model with real-time CGM data for live deployment.  

• Extend the fuzzy system to take several inputs such as physical activity, food intake, and HbA1c.  

• Test the model using diabetic patients in clinical trials.  

• Enhance alert systems using voice assistants for more convenient usage. • Compare with reinforcement learning 

models to optimize adaptively over time.  
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